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Abstract. We present a continuous time/discrete space model of biofilm
growth, starting from the semi-discrete master equation. The probabil-
ities of biomass movement into neighboring sites depend on the local
biomass density and on the biomass density in the target site such that
spatial movement only takes place if (i) locally not enough space is avail-
able to accommodate newly produced biomass and (ii) the target site has
capacity to accommodate new biomass. This mimics the rules employed
by Cellular Automata models of biofilms. Grid refinement leads formally
to a degenerate parabolic equation. We show that a set of transition rules
can be found such that a previously studied ad hoc density-dependent
diffusion-reaction model of biofilm formation is approximated well.

1 Introduction

Most bacterial populations live as microbial depositions on immersed surfaces
(called substratum in the biofilm context). These biofilm colonies are not a con-
sequence of active or even deliberate aggregation of microorganisms but of im-
mobilization and cell division. Once cells become sessile they start to produce an
extracellular polymeric network in which they are themselves embedded (EPS).
Thus, they are heavily restricted in their mobility. Living in biofilm colonies is
quite different from living as a suspended population. For example, the colony
offers protection against mechanical washout or antibiotic attacks.

As long as the conditions are locally favorable to sustain microbial growth,
cells will increase in size and eventually divide. The local expansion of a biofilm
is primarily driven by this growth process. As new cells require more space, the
neighbors must make way. The bacteria closer to the food source grow faster
than the bacteria further away, e.g. the ones close to the substratum. This can
lead to the characteristic ”biofilm mushroom structures” [10] which appear as
if the biofilm is growing toward the region with higher food concentrations. In
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Fig. 1. Schematics of one time step of biomass spreading in cellular automata models,
cf [12,13], (left to right): If the biomass in a grid cell approaches or exceeds maximum
packing density (yellow grid cells), mass is moved into neighboring sites. If empty
neighboring grid cell are found the excess biomass is placed there (grey), otherwise
re-shuffling takes place (existing biomass is placed in a neighboring cell [grey-yellow],
the excess biomass of which is placed in a suitable empty site).

contrast to chemotaxis, however, this is not an active movement up the nutrient
gradient but a consequence of the fact that life under conditions of abundance
is more conducive to population growth than under conditions of starvation.

The most widespread technique in modern biofilm modeling, and in fact the
modeling concept that first was used to describe multi-dimensional biofilm
formation are cellular automata, e.g. [2,7,12,13,14], cf Fig. 1. Deterministic con-
tinuum models include the density-dependent diffusion model [3], which is for-
mulated as a traditional spatially structured population and resource dynamics
model. Despite the good phenomenological agreement between different model
approaches [10,17] no attempts have been made so far to relate these seemingly
so different models to each other. We formulate here a discrete space, continu-
ous time model, starting from the master equation that describes the probability
that bacteria move from one site on a regular lattice into a neighboring site and
vice versa. This movement follows stochastic rules which qualitatively mimic
those in [12]. The probability of biomass movement into neighboring sites has
to account for two particular aspects: (i) It depends on the availability of space
in that site (volume filling, cf [11]), and (ii) as long as there is capacity to ac-
commodate new biomass locally the incentive to move into a neighboring site is
small (quenching). Semi-discrete master equation models lend themselves in an
often straightforward manner to deriving deterministic continuous models. Our
goal is to derive from this spatially discrete description the phenomenological
nonlinear diffusion model [3]. In fact, since this was originally introduced in an
ad hoc fashion, the semi-discrete approach described here can be understood as
an a posteriori derivation of this model.

Semi-discrete master equation models for spatially structured populations
have been developed for many different types of migration in ecology and cell
biology, such as aggregation and (chemo-)taxis, cf. [1,9,11,16]. The advantage
of the approach is that phenomenological migration rules are easily formulated
based on assumptions on the individual level, while the well-developed machinery
of differential equations can be used to study the model on the population level.
The biofilm model presented here has qualitative properties that are distinct
from other master equation models, since it has to account for the properties (i)
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and (ii) above. Moreover, since the driving force behind spatial expansion of the
biofilm is population growth, this needs to be included in every biofilm model.

2 The Spatially Discrete Master Equation

We consider an equidistant discretization of the real line and denote by T ±
i the

probability that biomass moves from the ith grid cell into neighbor cell i ± 1,
cf. Fig. 2. We follow common practice and equate the dependent variable ui

with the population density in the ith site on the lattice. Like most biofilm
models, we subsume EPS and cells in this variable. Since the site’s capacity to
accommodate bacteria is limited, we normalize the density with respect to the
maximum density, i.e. we interpret it as the volume fraction of site i occupied by
the population. Thus, 0 ≤ ui ≤ 1 is mandatory. The T ±

i can also be understood
as mass transfer rates. The master equation reads

dui

dt
= T +

i−1ui−1 + T −
i+1ui+1 − (T +

i + T −
i )ui + Kiui, (1)

where T ±
i = αq±i with a scaling factor α that depends on time-scale and length

scale, i.e. distance between two sites h. More specifically, for diffusion problems
α scales with h2 , such that limh→0 αh2 = α0 > 0. The probability q±i of a jump
from location i to location i± 1 depends on the densities in both sites, i.e. on ui

and on ui±1. We make the general ansatz

q±i = q(ui)p(ui±1). (2)

In cellular automaton biofilm models like [12], spatial spreading of biomass takes
place if the local biomass density ui reaches or exceeds the maximum cell packing
density, i.e. u ≈ 1. Then a given or randomly chosen amount of the local biomass
density is placed in a neighboring grid cell according to some stochastic local rule.
In the continuum model [3], on the other hand, the spatial spreading is described
deterministically: biomass is not moved into neighboring sites as long as newly
produced biomass still easily fits into the local site. As ui increases and gets
close to 1, T ±

i increases. Moreover, the bigger the volume fraction in the target
site, the smaller is T ±

i . Thus, we assume q(u) to be a monotonously increasing
function and p(u) to be a monotonously decreasing function. Assuming sufficient
smoothness, we have for p, q the properties

Fig. 2. Schematic of movement of biomass between neighboring lattice cells. The prob-
ability for biomass to move from cell i into cell i ± 1 is denoted by T ±

i etc.
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q(0) = 0, q′(u) ≥ 0, q(1) = 1,

p(0) = 1, p′(u) ≤ 0, p(1) = 0.
(3)

In (1), Ki is the net biomass production rate in grid cell i. This is the ac-
tual force driving the expansion of biofilm colonies. If Ki is a positive constant
the model describes unrestricted exponential growth. In most biofilm systems,
growth is eventually not everywhere unlimited. Limitations can be induced by
local limitation of nutrients, iron, oxygen (aerobic case) etc. or by large amounts
of growth inhibitors such as protonated lactic acids, proton ions [i.e. low pH], or
oxygen (anaerobic case). Modeling these effects is conceptually straightforward.
Each growth limiting substrate is described by an additional transport-reaction
equation, which is coupled with (1) in the reaction term Ki. The growth limita-
tion mechanisms listed above are due to an increase of biomass in the system.
For example, the more bacteria there are in the system the more nutrients are
depleted, etc. In many biofilm systems the net growth rate can become negative,
e.g if nutrients are locally completely depleted and natural cell loss dominates.
Under this light, assuming Ki = const is the most challenging case because
biomass production is highest and, thus, biomass spreading most pronounced.

The relationship between the spatially discrete and a continuous description
is established by passing the grid cell size h in (1) to the continuous limit, h → 0.
Assuming enough smoothness we approximate q(ui±1) and p(ui±1) in the usual
way by Taylor polynomials about ui,

q(ui±1) = q(ui) + (ui±1 − ui)q′(ui) + (ui±1 − ui)2q′′(ui)/2 + O((ui±1 − ui)3)

p(ui±1) = p(ui) + (ui±1 − ui)p′(ui) + (ui±1 − ui)2p′′(ui)/2 + O((ui±1 − ui)3).

Interpreting ui as a quantity in the cell center xi, we can interpolate the grid
function ui by a continuous function u with u(t, xi) = ui(t). For given t we
approximate u(t, xi±1) by Taylor polynomials

u(t, xi±1) = ui(t) ± h
∂ui(t)

∂x
+

h2

2
∂2ui(t)

∂x2
+ O(h3)

where ∂ui

∂x is short-hand for ∂u
∂x (·, xi). Substituting these expressions into (1) we

obtain after dropping O(h3) terms and sorting by powers of ∂ui/∂x

∂ui

∂t
= Kui + αh2 [p(ui)q(ui) + u (p(ui)q′(ui) − q(ui)p′(ui))]

∂2ui

∂x2
+

+ αh2 [p(ui)q′′(ui)ui + 2q′(ui)p(ui) − uiq(ui)p′′(ui)]
(

∂ui

∂x

)2

.

(4)

Defining now the density dependent diffusion coefficient

D(u) := p(u)q(u) + u (p(u)q′(u) − q(u)p′(u)) (5)

equation (4) can be written as a diffusion-reaction equation in divergence form

du

dt
=

∂

∂x

(
D(u)

∂u

∂x

)
+ Ku. (6)
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3 An Inverse Problem

A density-dependent diffusion-reaction model for biofilm formation was intro-
duced in [3] and has been studied since numerically and analytically in its orig-
inal and extended versions, e.g. in [4,5,6,8]. The pecularity of that model lies in
the form of the nonlinear diffusion coefficient D(u), namely

D(u) = δua(1 − u)−b, a, b ≥ 1. (7)

For small u � 1 this type of nonlinear diffusion acts like the porous medium
equation, while for large u ≈ 1 it shows fast diffusion effects. The interplay of
both effects is required to describe a growing biofilm. It was shown in [6] that
solutions of this model remain bounded by and separated from unity, u < 1− η,
for a η > 0, as long as the biofilm/water interface stays away from the boundary
of the domain somewhere. Thus, the singularity is never reached. It follows then
with standard arguments about degenerate diffusion-reaction equations, cf [15],
that initial data with compact support imply solutions with compact support. In
our application this means that the interface between biofilm and surrounding
liquid is sharp and propagates at finite speed.

We try to find jump probabilities q(u) and p(u) with (3) such that the
diffusion-reaction model (6) with (7) is recovered. This is a constrained scalar
boundary value problem for two unknown functions. It is transformed into an
ordinary boundary value problem by introducing one more assumption on q
and/or p. We propose

p(u) := 1 − uq(u). (8)

It is easily verified that p satisfies (3) if q does and vice versa. With (8) equation
(5) becomes the linear ordinary differential equation

uq′(u) + q(u) = D(u), (9)

which degenerates for u = 0. Moreover, the right hand side of (9) blows up for
u = 1. We introduce the following regularization with small parameter ε > 0,
which was already used in the analysis of the biofilm model (6), (7) in [6,8].

Dε(u) =

{
δ (u+ε)a

(1−u)b , for u < 1 − ε,

δε−b, for u ≥ 1 − ε.
(10)

The unique solution qε of the regularized initial value problem

(u + ε)q′(u) + q(u) = Dε(u), q(0) = 0 (11)

is obtained as the strictly increasing function

qε(u) =
1

u + ε

∫ u

0

Dε(s)ds,

which is bounded for every ε > 0 and 0 ≤ u ≤ 1. Moreover, 1 < qε(1) < ∞ for
every small enough ε. Thus, continuity and monotonicity imply that there exists
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a ũε < 1 such that qε(ũε) = 1, while qε(u) < 1 for u < ũε and qε(u) > 1 for
u > ũε. Hence, qε(u) does not belong to the desired class of functions

G := {g ∈ C([0, 1]) : g(0) = 0, g(1) = 1, g(u1) ≤ g(u2) ∀ u1 < u2}.

Thus the problem of finding an exact solution of (11) in G is ill-posed and the best
we can hope for is to find a function rε(u) ∈ G that solves (11) approximately.
Thus, we are looking for the function in G with the smallest distance from qε,

min
r∈G

‖qε − r‖2. (12)

This minimization problem is solved by the function

rε(u) =
{

qε(u), for u ≤ ũε,
1, for u > ũε,

(13)

because rε ∈ G and

‖qε − rε‖2
2 =

∫ ũε

0

(qε(s) − rε(s))2ds +
∫ 1

ũε

(qε(s) − rε(s))2ds.

The first integral vanishes for r(u) = rε(u) as defined above, and, since qε(u) > 1
and r(u) ≤ 1 for u > ũε, the second integral becomes minimal if r(u) = 1
for u > ũε. Passing the regularization parameter to the limit, ε → 0, then
rε(u) → r(u) pointwise, where

r(u) =
{

φ(u), for u ≤ ũ,
1, for u > ũ,

, with φ(u) =
1
u

∫ u

0

D(s)ds. (14)

Function φ(u) is the strictly increasing solution of the initial value problem
(9) with q(0) = 0 and ũ is the unique value such that φ(ũ) = 1. Note that
limu→1 φ(u) = ∞. Obviously r ∈ G. We choose q(u) := r(u). It remains to
validate how good this approximation is for practical purposes. We recall from
[6] that the solution of (6) with (7) satisfies u < 1−η for a η > 0, which depends
on the parameters and the initial data. Thus, if ũ > 1 − η then (6) with (7) is
equivalent with the PDE model that one obtains from the lattice model with
jump probability q(u) = r(u) from (14). Otherwise they are equivalent as long as
the solutions remain bounded by ũ, i.e. for a finite time interval. Unfortunately,
the proof in [6] does not allow to compute quantitative estimates for η, so that
we have to fall back on comparisons with computer simulations. For example,
in the 2D and 3D simulations of the single-species growth model in [4,5,6], the
solution reached values above u ≈ 0.99 but remained below u ≈ 0.9999, thus, we
have the numerical estimates η̂ > 10−4. In all three cases the exponents in the
biomass diffusion coefficient were a = b = 4 and the biofilm motility coefficient
δ < 10−12. Then∫ u

0

D(s)ds = uφ(u) = δ

(
u + 4 ln(1 − u) − −18u2 + 30u − 13

3(1 − u)3
− 13

3

)
. (15)
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Fig. 3. η̃ = 1 − ũ as a function of the biomass mobility parameter δ

On the other hand the value η̃ := 1−ũ can be computed from (15). It is plotted
in Fig. 3 for δ covering several orders of magnitude. η̃ decreases as δ decreases. In
all cases, ũ remained above the maximum values of u in the numerical simulations
reported above, i.e η̂ > 1 − ũ =: η̃ by at least one order of magnitude. Thus
the nonlinear diffusion-reaction model that is derived from the semi-discrete
master equation (1) with the jump probabilities T±

i (u) = αq(ui)p(ui±1), q(u) :=
r(u), p(u) := 1 − uq(u) is in these simulations indeed equivalent to the double-
degenerate density-dependent diffusion-reaction model.

We remark that (6) can also be written in the Laplacian form

ut =
∂2

∂x2

(∫ u

0

D(s)ds

)
+ Ku. (16)

Hence,(1) is equivalent with the finite difference discretisation of (16)

dui

dt
= α (ui−1q(ui−1) − 2uiq(ui) + ui+1q(ui+1)) + Kui. (17)

Note that assuming p(u) ≡ 1 instead of (8), i.e. transition probability does not
depend on density in target site, also leads to (9) and thus to (17).

4 Numerical Results

We conduct computer simulations of the semi-discrete model in two space dimen-
sions on a n×m grid. Nutrients are assumed to be nowhere limited, K = const.
In interior grid points 1 < i < n, 1 < j < m the 2D variant of (1) reads

d

dt
ui,j = Kui,j + T +,0

i−1,jui−1,j + T −,0
i+1,jui+1,jT 0,+

i,j−1ui,j−1 + T 0,−
i,j+1ui,j+1

− (T +,0
i,j + T −,0

i,j + T 0,+
i,j + T 0,−

i,j )ui,j ,
(18)

where T ±,0
i,j = αq(ui,j)p(ui±1,j) and T 0,±

i,j = αq(ui,j)p(ui,j±1). The derivation of
the 2D equivalents of (4) and (6) follows the same procedure as in 1D, albeit
notation and calculations are more cumbersome. The inverse problem in Section
3 is independent of the problem dimension.
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Fig. 4. 2D Simulation of biofilm growth on a 128 × 128 grid. Shown are for selected
time instances t the biomass densities ui,j .The bottom right insert shows maxij uij(t)
and the occupancy function ω(t), i.e. the fraction of grid cells with u > 10−6.

In i = 1, i = n, j = 1, j = m, (18) is corrected such that no exchange
of biomass across the lattice boundaries takes place, mimicking homogeneous
Neumann conditions. We set in the ”virtual grid points” u0,j := u1,j , un+1,j :=
un,j, ui,0 := ui,1, ui,m+1 := ui,m and eliminate them from (18). The system of
nm ordinary differential equations is integrated by the Runge-Kutta-Fehlberg
method RKF4(5).

We use a 128×128 grid. Cells are inoculated in three spherical pockets around
the grid cells (i, j) = (1, 1) [radius ρ = 0.1n, initial biomass density u0 = 0.8],
(i, j) = (n/2, 1) [ρ = 0.11n, u0 = 0.75], and (i, j) = (n, 1) [ρ = 0.12n, u0 = 0.7].
We take q(u) from (14) and p(u) = 1 − uq(u). For the coefficients of D(u) we
pick a = b = 4 and δ = 10−12m2/d, for the biomass production rate K = 6/d.
With a simulation domain of 100× 100μm2, h corresponds to 0.78125μm.

In Fig. 4 we show for selected t the biomass density ui,j(t), interpolated
between grid cells by the visualization software. Initially the three colonies

Table 1. Results of a grid refinement study. Reported are the values N1 :=
1

nm

∑
i,j |uij(tp) − ũij(tp)| for three selected time steps, where ũ is the projection of

the coarser grid onto the finer grid.

grid refinement t = 0.15 t = 0.25 t = 0.30

h = 1/16 → 1/32 0.025910 0.046667 0.056930
h = 1/32 → 1/64 0.010767 0.017459 0.021014
h = 1/64 → 1/128 0.003537 0.005473 0.006467
h = 1/128 → 1/256 0.001828 0.002741 0.003442
h = 1/256 → 1/512 0.000873 0.001184 0.001365
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Fig. 5. Biofilm/water interface at t = 30 for grid sizes h = 1/128, 1/256, 1/512 [green,
magenta, brown]

solidify, i.e. u increases, first without notable expansion. Later, the colonies ex-
pand spherically. Eventually, neighboring colonies merge and a homogeneous
thick layer of biomass develops that expands exponentially. This is a conse-
quence of the abundance of food and agrees with all other biofilm models. The
simulation is stopped before the entire lattice is filled with biomass. The biomass
density remains clearly below the cut-off value ũ that was computed above.

In order to investigate how the solution of the spatially discrete model changes
with grid refinement, we repeat and compare the simulations on grids of size
2k × 2k, where k = 4, ..., 9. Table 1 shows the convergence of the grid refinement
study. This is visually supported by Fig. 5 where the biofilm/water interface is
plotted for subsequent grids. These agree well within plotting accuracy.

5 Conclusion, Discussion, and Future Work

Spatially discrete master equations are routinely used to derive population mod-
els that can be studied with the well developed machinery of partial differential
equations. We use this approach to derive a highly nonlinear diffusion-reaction
model of biofilm expansion. The underlying mechanisms are quite different than
for other biological systems. Most notably, spatial spreading of biomass is driven
by production of new biomass and takes place only if locally no space is available
to accommodate newly produced cells. In the continuous limit this is rendered
by a combination of degenerate and fast diffusion. In numerical simulations we
could show that the spatially discrete master equation and the continuous model
agree well. The assumptions that we made to define the probabilities for biomass
movement mimic the stochastic rules that are used in cellular automata biofilm
models. Therefore, we understand the master equation model as a link between
discrete stochastic and continuous deterministic biofilm models.

In our current study the equivalence of spatially discrete and continuous model
rests on empirical computer simulations. While it follows from continuity that
both models agree exactly for some time, the question how long this equivalence
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is valid certainly warrants more rigorous mathematical analysis. On the modeling
side, future research will involve the extension of the approach to mixed-culture
biofilm systems and to biofilm systems with preferred spreading directions, e.g.
biofilms that predominantly creep over the substratum rather than forming patchy
biofilm colonies. Moreover, for realistic applications the biofilm population models
need to be coupled with models of resource dynamics, as already indicated above.
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